B.A/B.Sc 3rd Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH3CC06 (Group Theory-1)

Time: 3 Hours Full Marks: 6			
		The figures in the margin indicate full marks.	
(Candid	lates are required to write their answers in their own words as far as practicable.	
		[Notation and Symbols have their usual meaning]	
1.	Answ	er any six questions: $6 \times 5 = 30$	
(a)		Prove that $\mathbb{Z}_3 \bigotimes \mathbb{Z}_5 \cong \mathbb{Z}_{15.}$	[5]
(b)		In S_4 , find a cyclic subgroup of order 4 and a noncyclic subgroup of order 4.	[5]
(c)	(i)	Let H be a subgroup of the group G of index 2. Prove that H is normal in G.	[3]
	(ii)	Prove that ${\mathbb Z}$ under addition is not isomorphic to ${\mathbb Q}$ under addition.	[2]
(d)		Show that A_5 has no normal subgroup.	[5]
(e)		Determine the number of cyclic subgroups of order 10 in $Z_{100} \otimes Z_{25}$.	[5]
(f)		Prove that a cyclic group of finite order n has one and only one subgroup of order	[5]
		<i>d</i> for every positive divisor <i>d</i> of <i>n</i> .	
(g)		Let G be a cyclic group of order 6 generated by x. Let H , K be the subgroups	[5]
		generated by x^2 , x^3 respectively. Prove that $ H =3$, $ K =2$, $G=HK$, and that	
		$H \cap K = \{e\}.$	
(h)		Show that all proper subgroups of the quaternion group Q_8 are cyclic.	[5]
2.	Answ	ver any three questions: $3 \times 10 = 30$	
(a)	(i)	If H is a subgroup of finite index in G, prove that there is only a finite of	[5]
		distinct subgroups in G of the form aHa ⁻¹ .	
	(ii)	Does there exist subgroup H of \mathbb{Z} other than n \mathbb{Z} ? Justify your answer.	[5]
(b)	(i)	Let G be a finite group whose order is not divisible by 3. Suppose that	[5]
		(ab) ${}^{3}=a{}^{3}b{}^{3}$ for all x in G. Prove that G must be abelian.	
	(ii)	How many generators does a cyclic group of order n have? Justify your answer.	[5]
(c)	(i)	Suppose H is the only subgroup of order H in the finite group G. Prove that H	[5]
		is normal subgroup.	
	(ii)	Prove that a group of order 9 is abelian.	[5]
(d)	(i)	Suppose that N and M are two normal subgroups of G and that N \cap	[5]
		$M = \{e\}$. Show that for any n in N and m in M, nm=mn.	
	(ii)	Let H be group of order n which is also a homomorphic image of G. Let $k > 1$	[5]
		be a divisor of $ G $ such that gcd (k,n)=1. Then show that G is not simple.	
(e)	(i)	Let ϕ : G \rightarrow G' be a homomorphism of a group G onto a group G' and θ be the	[5]
		natural homomorphism of G onto G/H where $H = ker\phi$. Prove that there exists	

an isomorphism ψ : G/H \rightarrow G[/]such that $\phi = \psi \theta$.

(ii) Let $G = \{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} | a \text{ in } \mathbb{R} | a \neq 0 \}$. Show that G is a group under matrix [5] multiplication.